FameFlower Test Results
- Overview
- Test Runs
- Results
- 1. High level FameFlower results data
- 2. CPU Utilization comparisons
- 3. Memory trends
- 4. Database CPU trends
- 5. Slow queries
- 6. Missing indexes
- Summary
Overview
Using the Carrier-io framework for capturing and analyzing performance test results, the following tests for the export instance UUIDs workflows were executed.
The testing was provided with the modules:
Backend:
- mod-inventory-storage-19.1.2
- mod-inventory-14.1.2
- mod-authtoken-2.4.0
- mod-permissions-5.9.0
- okapi-2.35.2
Frontend:
- folio_inventory-2.0.2
Test Runs
30-min Runs for export instance UUIDs workflow:
Test
Virtual Users
Duration
OKAPI log level
Profiled
Rump up
Size of records
1. FameFlower-Baseline
1
30 min
INFO
No
5
10K~50K instances
2. FameFlower-Baseline
1
30 min
INFO
No
1
50K~100K instances
3. FameFlower-Baseline
1
30 min
INFO
Yes
10
10K~50K instances
4. FameFlower-Baseline
1
30 min
INFO
Yes
10
50K~100K instances
5. FameFlower-Baseline
5
30 min
INFO
No
50
10K~50K instances
6. FameFlower-Baseline
5
30 min
INFO
No
10
50K~100K instances
7. FameFlower-Baseline
5
30 min
INFO
Yes
50
10K~50K instances
8. FameFlower-Baseline
5
30 min
INFO
Yes
50
50K~100K instances
Results
*All numbers are in milliseconds except for those in the Delta % column, which indicates the difference in percentage going from 1 to 5 users, 10K~50K instances1. High level FameFlower results data
- The chart shows the overall high-level API stats obtained by JMeter calling various APIs in the save instance UUIDs worfklow. It breaks down average response times for 1 and 5 users tests per API call.
A few things to note:
- GET_/inventory/instances and GET_/instance-bulk/ids have the slowest response time. Have failed responses even for 1 user
The workflow with more than 100K records become unresponsive even with 1 user
- The workflow with more than 5 users become unresponsive
The charts below offer a clearer side-by-side comparison for the 1 and 5 users tests runs
2. CPU Utilization comparisons
3. Memory trends
Folio build was deployed with 30 services installed randomly across 4 m5.large instances in the fcp1-pvt cluster and the database was created on the db.r5.xlarge AWS RDS instance. Logging level was set to default INFO.
According to the capacity performance test results, we can say that the saturation point was caused by high CPU utilization on one of four nodes in the fcp1-pvt cluster.
Based on the CPU usage per service we can make a conclusion that the most consuming service was mod-inventory-storage.
The service is 99% of allocated RAM memory.
4. Database CPU trends
For 1 user - 30 min run
For 5 users - 30 min run
5. Slow queries
Slowest queries which took the most of execution time were initiated by the mod-inventory-storage service presented in the following table:
Total time | Average Time,ms | Calls | Query |
32% | 10,796 | 15 | SELECT jsonb,id FROM fs09000000_mod_inventory_storage.instance WHERE to_tsvector($1, f_unaccent(concat_space_sql(instance.jsonb->>$2 , concat_array_object_values(instance.jsonb->$3,$4) , concat_array_object_values(instance.jsonb->$5,$6)))) @@ (to_tsquery($7, f_unaccent($8))) ORDER BY left(lower(f_unaccent(instance.jsonb->>$9)),$10), lower(f_unaccent(instance.jsonb->>$11)) |
23% | 22,250 | 5 | SELECT jsonb,id FROM fs09000000_mod_inventory_storage.instance WHERE (to_tsvector($1, f_unaccent(concat_space_sql(instance.jsonb->>$2 , concat_array_object_values(instance.jsonb->$3,$4) , concat_array_object_values(instance.jsonb->$5,$6)))) @@ (to_tsquery($7, f_unaccent($8)))) AND (to_tsvector($9, f_unaccent(instance.jsonb->>$10)) @@ replace((to_tsquery($11, f_unaccent($12)))::text, $13, $14)::tsquery) ORDER BY left(lower(f_unaccent(instance.jsonb->>$15)),$16), lower(f_unaccent(instance.jsonb->>$17)) |
13% | 1,709 | 37 | SELECT COUNT(*) FROM (SELECT jsonb,id FROM fs09000000_mod_inventory_storage.instance WHERE to_tsvector($1, f_unaccent(concat_space_sql(instance.jsonb->>$2 , concat_array_object_values(instance.jsonb->$3,$4) , concat_array_object_values(instance.jsonb->$5,$6)))) @@ (to_tsquery($7, f_unaccent($8))) ORDER BY left(lower(f_unaccent(instance.jsonb->>$9)),$10), lower(f_unaccent(instance.jsonb->>$11)) LIMIT $12) x |
12% | 1,818 | 34 | WITH headrecords AS ( SELECT jsonb, lower(f_unaccent(jsonb->>$1)) AS title FROM fs09000000_mod_inventory_storage.instance WHERE (to_tsvector($2, f_unaccent(concat_space_sql(instance.jsonb->>$3 , concat_array_object_values(instance.jsonb->$4,$5) , concat_array_object_values(instance.jsonb->$6,$7)))) @@ (to_tsquery($8, f_unaccent($9)))) AND left(lower(f_unaccent(jsonb->>$10)),$11) < ( SELECT left(lower(f_unaccent(jsonb->>$12)),$13) FROM fs09000000_mod_inventory_storage.instance ORDER BY left(lower(f_unaccent(jsonb->>'title')),600) OFFSET $14 LIMIT $15 ) ORDER BY left(lower(f_unaccent(jsonb->>$16)),$17) LIMIT $18 OFFSET $19 ), allrecords AS ( SELECT jsonb, lower(f_unaccent(jsonb->>$20)) AS title FROM fs09000000_mod_inventory_storage.instance WHERE (to_tsvector($21, f_unaccent(concat_space_sql(instance.jsonb->>$22 , concat_array_object_values(instance.jsonb->$23,$24) , concat_array_object_values(instance.jsonb->$25,$26)))) @@ (to_tsquery($27, f_unaccent($28)))) AND (SELECT COUNT(*) FROM headrecords) < $29 ) SELECT jsonb, title, $30 AS count FROM headrecords WHERE (SELECT COUNT(*) FROM headrecords) >= $31 UNION (SELECT jsonb, title, (SELECT COUNT(*) FROM allrecords) AS count FROM allrecords ORDER BY title LIMIT $32 OFFSET $33 ) ORDER BY title |
4% | 2,804 | 7 | SELECT COUNT(*) FROM (SELECT jsonb,id FROM fs09000000_mod_inventory_storage.instance WHERE (to_tsvector($1, f_unaccent(concat_space_sql(instance.jsonb->>$2 , concat_array_object_values(instance.jsonb->$3,$4) , concat_array_object_values(instance.jsonb->$5,$6)))) @@ (to_tsquery($7, f_unaccent($8)))) AND (to_tsvector($9, f_unaccent(instance.jsonb->>$10)) @@ replace((to_tsquery($11, f_unaccent($12)))::text, $13, $14)::tsquery) ORDER BY left(lower(f_unaccent(instance.jsonb->>$15)),$16), lower(f_unaccent(instance.jsonb->>$17)) LIMIT $18) x |
3% | 1,865 | 9 | EXPLAIN ANALYZE WITH headrecords AS ( SELECT jsonb, lower(f_unaccent(jsonb->>'title')) AS title FROM fs09000000_mod_inventory_storage.instance WHERE (to_tsvector('simple', f_unaccent(concat_space_sql(instance.jsonb->>'title' , concat_array_object_values(instance.jsonb->'contributors','name') , concat_array_object_values(instance.jsonb->'identifiers','value')))) @@ (to_tsquery('simple', f_unaccent('''english''')))) AND left(lower(f_unaccent(jsonb->>'title')),600) < ( SELECT left(lower(f_unaccent(jsonb->>'title')),600) FROM fs09000000_mod_inventory_storage.instance ORDER BY left(lower(f_unaccent(jsonb->>'title')),600) OFFSET 10000 LIMIT 1 ) ORDER BY left(lower(f_unaccent(jsonb->>'title')),600) LIMIT 100 OFFSET 0 ), allrecords AS ( SELECT jsonb, lower(f_unaccent(jsonb->>'title')) AS title FROM fs09000000_mod_inventory_storage.instance WHERE (to_tsvector('simple', f_unaccent(concat_space_sql(instance.jsonb->>'title' , concat_array_object_values(instance.jsonb->'contributors','name') , concat_array_object_values(instance.jsonb->'identifiers','value')))) @@ (to_tsquery('simple', f_unaccent('''english''')))) AND (SELECT COUNT(*) FROM headrecords) < 100 ) SELECT jsonb, title, 0 AS count FROM headrecords WHERE (SELECT COUNT(*) FROM headrecords) >= 100 UNION (SELECT jsonb, title, (SELECT COUNT(*) FROM allrecords) AS count FROM allrecords ORDER BY title LIMIT 100 OFFSET 0 ) ORDER BY title |
6. Missing indexes
Summary
See Attached FameFlower Performance Test Runs.xlsx for details
- FOLIO performs better without being profiled when the tests are running
Issues
- Most of failed requests were related to GET_/inventory/instances and GET_/instance-bulk/ids that use mod-inventory-storage service
- GET_/inventory/instances and GET_/instance-bulk/ids have failed responses even for 1 user
The workflow with more than 100K records become unresponsive even with 1 user
- The workflow with more than 5 users become unresponsive
- Memory Issues:
- mod-inventory-storage has noticeable to significant gains in memory used.
- fasterxml.jackson.databind.ObjectMapper.readValue method of mod-inventory-storage service overuses CPU resources as there are a lot of JSON decoding, this implementation could be reviewed and improved to reduce operations with JSON