FameFlower Test Results
Table of Contents |
---|
Overview
Jira Legacy | ||||||||
---|---|---|---|---|---|---|---|---|
|
In this workflow we are checking the performance of the loading items on instance record (in holdings accordion) workflow running in the Fameflower release. We will test it with 1, 5, 8, and 20 virtual users for 30 minutes. A longevity test will also be executed to see if there were memory issues.
Backend:
- mod-inventory-storage-19.1.2
- mod-inventory-14.1.3
- mod-authtoken-2.4.0
- mod-permissions-5.9.0
- okapi-2.38.0
- mod-circulation-18.0.9
- mod-circulation-storage-11.0.8
Frontend:
- folio_inventory-2.0.2
Environment:
- 55 back-end modules deployed in 110 ECS services
- 3 okapi ECS services
- 8 m5.large EC2 instances
- 1 db.r5.xlarge AWS RDS instance
- INFO logging level
High Level Summary
Overall check in, check out time in seconds
- Average check in time is 1.51 seconds for a typical use case of 8 users, 1.65 seconds for 20 users
- Average check out time is 1.75 seconds for a typical use case of 8 users, 1.90 seconds for 20 users
- Slow APIs taking more than 100ms to run
- POST checkout-by-barcode
- POST checkin-by-barcode
- Get circulation/loans
- Get inventory/items
- mod-inventory-storage log warnings for missing indexes - 64K lines in 45 minutes run. Logging level could be reduced to WARNING or INFO, but at the cost of having less data to work with should there be a need to troubleshoot. Adding the missing indexes could improve performance while stop logging these warnings
Jira Legacy server System Jira serverId 01505d01-b853-3c2e-90f1-ee9b165564fc key CIRCSTORE-215 - JVM profiling shows JSON de/serialization operations one of the slowest operations, totaling more CPU time than other calls. Since FOLIO modules retrieves and stores JSON objects, making sure that serialization and deserialization JSON efficient is essential, see Recommended Improvements
Test Runs
Overall load items workflow time in seconds
...
Slow APIs taking more than 100 ms to return
...
GET inventory/instances keyword all "aba"
...
Test Runs
...
Test
...
Virtual Users
...
Duration
...
OKAPI log level
...
Profiled
...
Ramp up (total time
in seconds)
...
1.
...
1
...
30 min
...
INFO
...
No
...
1
...
2.
...
5
...
30 min
...
INFO
...
No
...
50
...
3.
...
8
...
30 min
...
INFO
...
No
...
80
...
4.
...
20
...
30 min
...
INFO
...
No
...
200
...
5.
...
1
...
30 min
...
INFO
...
Yes
...
1
...
6.
...
5
...
30 min
...
INFO
...
Yes
...
50
...
7.
...
8
...
30 min
...
INFO
...
Yes
...
80
...
8.
...
20
...
30 min
...
INFO
...
Yes
...
200
formattedRecords
Results
JVM Profiling
- Overall slow methods (between the modules profiled: okapi, mod-inventory, mod-inventory-storage)
- To see more drill down these methods at: http://ec2-3-93-19-104.compute-1.amazonaws.com/grafana/d/b2iP-9hiz/java-profiling-folio?orgId=1&var-service_tag=okapi&var-service_tag=mod-inventory-storage&var-service_tag=mod-inventory&var-aggregation=10s&from=1590418466176&to=1590420349447
- Only slow Okapi methods:
When drilling down org.folio.okapi.managers.ProxyService.getModulesForRequest , we get the following tree. To see more click here: http://ec2-3-93-19-104.compute-1.amazonaws.com/grafana/d/U9JtDPLWz/stacktrace?orgId=1&class=org.folio.okapi.managers.ProxyService&method=getModulesForRequest&from=1590418466176&to=1590420349447
- Slow mod-inventory methods:
- Can drill down these methods for more information at : http://ec2-3-93-19-104.compute-1.amazonaws.com/grafana/d/b2iP-9hiz/java-profiling-folio?orgId=1&from=1589940195166&to=1589943457693&var-service_tag=mod-circulation&var-aggregation=10s
Database
Database show much CPU usage for 5, 8 and 20 users runs. 100% CPU usage for 5, 8, 20 users.
The following WARNING statements of missing indexes were generated during a test run and logged by mod-source-record-storage:
...
language | sql |
---|---|
linenumbers | true |
CPU Utilization
...
Memory
Memory was stable throughout the runs, only a spike here or there, but in a 30 minutes run they were consistent.
...
Appendix
See Attached FameFlower Performance Test Runs
Jira Legacy | ||||||||
---|---|---|---|---|---|---|---|---|
|
Table of Contents |
---|
Overview
In this workflow we are checking the performance of the loading items on instance record (in holdings accordion) workflow running in the Fameflower release. The series of steps can be found in the attached screencast.
Jira Legacy | ||||||||
---|---|---|---|---|---|---|---|---|
|
Backend:
- mod-inventory-storage-19.1.2
- mod-inventory-14.1.3
- mod-circulation-18.0.9
- mod-circulation-storage-11.0.8
- okapi-2.38.0
- mod-authtoken-2.4.0
- mod-permissions-5.9.0
- mod-data-export-1.1.1
- mod-source-record-storage-3.1.4
- mod-source-record-manager-2.1.4
Frontend:
- folio_inventory-2.0.2
- folio_circulation-2.0.0
- Item Check-in (folio_checkin-2.0.1)
- Item Check-out (folio_checkout-3.0.2)
Environment:
- 55 back-end modules deployed in 110 ECS services
- 3 okapi ECS services
- 8 m5.large EC2 instances
- 1 db.r5.xlarge AWS RDS instance
- INFO logging level
High Level Summary
- Slow APIs taking more than 100ms to run:
- GET source-storage/formattedRecords/{id}
- GET inventory/instances keyword all "aba"
- POST checkout-by-barcode
- GET inventory/items
- GET inventory/instances/{id}
- GET circulation/loans
- GET locations
- GET circulation/requests
- Some mod_source_record_storage's, mod-inventory-storage's, mod-circulation-storage's SQL queries took more than 500 ms to run, see the Slow Queries section and Recommended Improvements for the JIRAs created to address these SQL queries
- On average, the performance can be improved by 100%. if we remove redundant "EXPLAIN ANALYZE" query call on mod_source_record_storage module. EXPLAIN ANALYZE statements are debugging statements that added a second execution (along with the first one) therefore increasing the overall time by 100%.
- JVM profiling shows the slowest operations, totaling more CPU time than other calls:
- Get module for request
- JSON de/serialization
- logging with INFO level
Test Runs
Test | Virtual Users | Duration | OKAPI log level | Profiled | Ramp up (total time in seconds) |
1. | 1 | 30 min | INFO | No | 1 |
2. | 5 | 30 min | INFO | No | 50 |
3. | 8 | 30 min | INFO | No | 80 |
4. | 20 | 30 min | INFO | No | 200 |
5. | 1 | 30 min | INFO | Yes | 1 |
6. | 5 | 30 min | INFO | Yes | 50 |
7. | 8 | 30 min | INFO | Yes | 80 |
8. | 20 | 30 min | INFO | Yes | 200 |
Results
Overall load items workflow time in seconds
Average 50th %tile 75th %tile 95th %tile 1 user 14.39 s 14.39 s 14.39 s 14.39 s 5 users 46.30 s 45.75 s 46.57 s 46.59 s 8 users 1.24 min 1.21 min 1.25 min 1.25 min 20 users 3.10 min 3.05 min 3.12 min 3.12 min Slow APIs taking more than 100 ms to return
API 1 user (75th %tile) 5 users (75th %tile) 8 users (75th %tile) 20 Users (75th %tile) Loading items on instance record (in holdings accordion) GET source-storage/formattedRecords/{id} 5.32 s 19.92 s 34.83 s 1.46 min GET inventory/instances keyword all "aba"
355.60 ms 753.86 ms 909.02 ms 2.87 s GET locations 221.09 ms 142.89 ms 152.26 ms 205.71 ms GET inventory/items 164.45 ms 251.71 ms 286.87 ms 405.85 ms GET inventory/instances/{id} 119.93 ms 115.98 ms 123.88 ms 131.89 ms Check Out POST circulation/check-out-by-barcode 679.72 ms 1.04 s 1.11 s 1.45 s GET circulation/loans 221.95 ms 254.08 ms 251.45 ms 256.18 ms GET circulation/requests 81.77 ms 212.38 ms 257.80 ms 443.79 ms GET inventory/items 164.45 ms 251.71 ms 286.87 ms 405.85 ms
JVM Profiling
- Overall slow methods (between the modules profiled: okapi, mod-inventory, mod-inventory-storage, mod-circulation, mod-circulation-storage)
- To see more drill down these methods at: http://ec2-3-93-19-104.compute-1.amazonaws.com/grafana/d/b2iP-9hiz/java-profiling-folio?orgId=1&var-service_tag=okapi&var-service_tag=mod-inventory-storage&var-service_tag=mod-inventory&var-aggregation=10s&from=1590418466176&to=1590420349447
- Only slow Okapi methods:
When drilling down org.folio.okapi.managers.ProxyService.getModulesForRequest , we get the following tree. To see more click here: http://ec2-3-93-19-104.compute-1.amazonaws.com/grafana/d/U9JtDPLWz/stacktrace?orgId=1&class=org.folio.okapi.managers.ProxyService&method=getModulesForRequest&from=1590418466176&to=1590420349447
- Slow mod-inventory methods:
- Can drill down these methods for more information at : http://ec2-3-93-19-104.compute-1.amazonaws.com/grafana/d/b2iP-9hiz/java-profiling-folio?orgId=1&from=1589940195166&to=1589943457693&var-service_tag=mod-circulation&var-aggregation=10s
Database
Database show much CPU usage for 5, 8 and 20 users runs. 100% CPU usage for 5, 8, 20 users. Some mod_source_record_storage's, mod-inventory-storage's, mod-circulation-storage's SQL queries took more than 500ms to run, see the Slow Queries section and Recommended Improvements for the JIRAs created to address these SQL queries.
There aren't any WARNING statements of missing indexes in mod-inventory-storage, mod-source-record-storage modules.
The following WARNING statements of missing indexes were generated during a test run and logged by mod-circulation-storage:
Code Block | ||||
---|---|---|---|---|
| ||||
WARNING: Doing LIKE search without index for request.jsonb->>'requesterId', CQL >>> SQL: requesterId == a79b533d-8f29-4be1-9415-5f5cd936623b >>> lower(f_unaccent(request.jsonb->>'requesterId')) LIKE lower(f_unaccent('a79b533d-8f29-4be1-9415-5f5cd936623b'))
WARNING: Doing FT search without index for request.jsonb->>'pickupServicePointId', CQL >>> SQL: pickupServicePointId = 51787734-d899-41e6-b6b2-e531a315fd61 >>> to_tsvector('simple', f_unaccent(request.jsonb->>'pickupServicePointId')) @@ replace((to_tsquery('simple', f_unaccent('''51787734-d899-41e6-b6b2-e531a315fd61''')))::text, '&', '<->')::tsquery
WARNING: Doing FT search without index for request.jsonb->>'status', CQL >>> SQL: status = Open >>> to_tsvector('simple', f_unaccent(request.jsonb->>'status')) @@ replace((to_tsquery('simple', f_unaccent('''Open''')))::text, '&', '<->')::tsquery
WARNING: Doing SQL query without index for scheduled_notice.jsonb->>'nextRunTime', CQL >>> SQL: nextRunTime < 2020-05-27T00:00:00.000Z >>> scheduled_notice.jsonb->>'nextRunTime' <'2020-05-27T00:00:00.000Z'
WARNING: Doing LIKE search without index for scheduled_notice.jsonb->'noticeConfig'->>'sendInRealTime', CQL >>> SQL: noticeConfig.sendInRealTime == false >>> lower(f_unaccent(scheduled_notice.jsonb->'noticeConfig'->>'sendInRealTime')) LIKE lower(f_unaccent('false'))
WARNING: Doing LIKE search without index for scheduled_notice.jsonb->>'triggeringEvent', CQL >>> SQL: triggeringEvent == "Due date" >>> lower(f_unaccent(scheduled_notice.jsonb->>'triggeringEvent')) LIKE lower(f_unaccent('Due date'))
WARNING: Doing LIKE search without index for patron_action_session.jsonb->>'patronId', CQL >>> SQL: patronId == a79b533d-8f29-4be1-9415-5f5cd936623b >>> lower(f_unaccent(patron_action_session.jsonb->>'patronId')) LIKE lower(f_unaccent('a79b533d-8f29-4be1-9415-5f5cd936623b'))
WARNING: Doing LIKE search without index for patron_action_session.jsonb->>'actionType', CQL >>> SQL: actionType == Check-out >>> lower(f_unaccent(patron_action_session.jsonb->>'actionType')) LIKE lower(f_unaccent('Check-out')) |
Database Slow queries
Anchor | ||||
---|---|---|---|---|
|
Slowest queries which took the most of execution time were initiated by the mod_source_record_storage, mod-inventory-storage and mod_circulation_storage services presented in the following table:
Percent of total time | Average Time,ms | Calls | Module | Query |
52% | 20,855 ms | 1,325 | mod_source_record_storage | select get_record_by_external_id($1, $2) Examples: EXPLAINANALYZEselect get_record_by_external_id('89a7ec1c-608f-4d24-90b6-57da21557874', 'instanceId') EXPLAIN ANALYZE select get_record_by_external_id('1abdfd67-a4c3-46ba-a66b-82619f633e9a', 'instanceId') EXPLAIN ANALYZE select get_record_by_external_id('ff2f06c1-caf7-427a-9544-d8716eda90a6', 'instanceId') |
0.8% | 669 ms | 658 | mod_inventory_storage | WITH headrecords AS ( SELECT jsonb, lower(f_unaccent(jsonb->>$1)) AS title FROM fs09000000_mod_inventory_storage.instance WHERE (to_tsvector($2, f_unaccent(concat_space_sql(instance.jsonb->>$3 , concat_array_object_values(instance.jsonb->$4,$5) , concat_array_object_values(instance.jsonb->$6,$7)))) @@ (to_tsquery($8, f_unaccent($9)))) ANDleft(lower(f_unaccent(jsonb->>$10)),$11) < ( SELECTleft(lower(f_unaccent(jsonb->>$12)),$13) FROM fs09000000_mod_inventory_storage.instance ORDERBYleft(lower(f_unaccent(jsonb->>'title')),600) OFFSET $14LIMIT $15 ) ORDERBYleft(lower(f_unaccent(jsonb->>$16)),$17) LIMIT $18OFFSET $19 ), allrecords AS ( SELECT jsonb, lower(f_unaccent(jsonb->>$20)) AS title FROM fs09000000_mod_inventory_storage.instance WHERE (to_tsvector($21, f_unaccent(concat_space_sql(instance.jsonb->>$22 , concat_array_object_values(instance.jsonb->$23,$24) , concat_array_object_values(instance.jsonb->$25,$26)))) @@ (to_tsquery($27, f_unaccent($28)))) AND (SELECTCOUNT(*) FROM headrecords) < $29 ) SELECT jsonb, title, $30AScountFROM headrecords WHERE (SELECTCOUNT(*) FROM headrecords) >= $31UNION (SELECT jsonb, title, (SELECTCOUNT(*) FROM allrecords) AScountFROM allrecords ORDERBY title LIMIT $32OFFSET $33 ) ORDERBY title E.x. WITH headrecords AS ( SELECT jsonb, lower(f_unaccent(jsonb->>'title')) AS title FROM fs09000000_mod_inventory_storage.instance WHERE (to_tsvector('simple', f_unaccent(concat_space_sql(instance.jsonb->>'title' , concat_array_object_values(instance.jsonb->'contributors','name') , concat_array_object_values(instance.jsonb->'identifiers','value')))) @@ (to_tsquery('simple', f_unaccent('''aba''')))) AND left(lower(f_unaccent(jsonb->>'title')),600) < ( SELECT left(lower(f_unaccent(jsonb->>'title')),600) FROM fs09000000_mod_inventory_storage.instance ORDER BY left(lower(f_unaccent(jsonb->>'title')),600) OFFSET 10000 LIMIT 1 ) ORDER BY left(lower(f_unaccent(jsonb->>'title')),600) LIMIT 100 OFFSET 0 ), allrecords AS ( SELECT jsonb, lower(f_unaccent(jsonb->>'title')) AS title FROM fs09000000_mod_inventory_storage.instance WHERE (to_tsvector('simple', f_unaccent(concat_space_sql(instance.jsonb->>'title' , concat_array_object_values(instance.jsonb->'contributors','name') , concat_array_object_values(instance.jsonb->'identifiers','value')))) @@ (to_tsquery('simple', f_unaccent('''aba''')))) AND (SELECT COUNT(*) FROM headrecords) < 100 ) SELECT jsonb, title, 0 AS count FROM headrecords WHERE (SELECT COUNT(*) FROM headrecords) >= 100 UNION (SELECT jsonb, title, (SELECT COUNT(*) FROM allrecords) AS count FROM allrecords ORDER BY title LIMIT 100 OFFSET 0 ) ORDER BY title |
0.8% | 214 ms | 1,918 | mod_circulation_storage | SELECT COUNT(*) FROM (SELECT jsonb,id FROM fs09000000_mod_circulation_storage.request WHERE (to_tsvector($1, f_unaccent(request.jsonb->>$2)) @@ replace((to_tsquery($3, f_unaccent($4)))::text, $5, $6)::tsquery) AND (to_tsvector($7, f_unaccent(request.jsonb->>$8)) @@ replace((to_tsquery($9, f_unaccent($10)))::text, $11, $12)::tsquery) LIMIT $13) x E.x. SELECT COUNT(*) FROM (SELECT jsonb,id FROM fs09000000_mod_circulation_storage.request WHERE (to_tsvector('simple', f_unaccent(request.jsonb->>'requesterId')) @@ replace((to_tsquery('simple', f_unaccent('''c2d0fc7d-85a9-4527-945d-6e5e29e74efc''')))::text, '&', '<->')::tsquery) AND (to_tsvector('simple', f_unaccent(request.jsonb->>'status')) @@ replace((to_tsquery('simple', f_unaccent('''Open''')))::text, '&', '<->')::tsquery) LIMIT 100) x |
0.6% | 177 ms | 1,914 | mod_inventory_storage | SELECTCOUNT(*) FROM (SELECT jsonb,idFROM fs09000000_mod_inventory_storage.item WHERElower(f_unaccent(item.jsonb->>$1)) LIKElower(f_unaccent($2)) LIMIT $3) x E.x. SELECT COUNT(*) FROM (SELECT jsonb,id FROM fs09000000_mod_inventory_storage.item WHERE lower(f_unaccent(item.jsonb->>'barcode')) LIKE lower(f_unaccent('19878861')) LIMIT 1) x |
0.6% | 165 ms | 1,914 | mod_inventory_storage | SELECT jsonb,idFROM fs09000000_mod_inventory_storage.item WHERElower(f_unaccent(item.jsonb->>$1)) LIKElower(f_unaccent($2)) LIMIT $3OFFSET $4 E.x. SELECT jsonb,idFROM fs09000000_mod_inventory_storage.item WHERE lower(f_unaccent(item.jsonb->>'barcode')) LIKE lower(f_unaccent('19878861')) LIMIT 1 OFFSET 0 |
CPU Utilization
1 user | 5 users | 8 users | 20 users | |||||
---|---|---|---|---|---|---|---|---|
Average % | Range % | Average % | Range % | Average % | Range % | Average % | Range % | |
Okapi | 2.12 | 0.29-8.94 | 2.87 | 1.56-13.65 | 2.78 | 0.31-16.82 | 2.85 | 0.32-11.65 |
mod-inventory | 0.84 | 0.31-14.82 | 0.68 | 0.30-4.01 | 0.67 | 0.26-7.79 | 0.65 | 0.27-3.72 |
mod-inventory-storage | 1.59 | 0.33-8.17 | 1.87 | 0.56-9.25 | 1.81 | 0.24-9.15 | 1.78 | 0.25-23.28 |
mod-circulation | 0.67 | 0.24-4.12 | 0.82 | 0.48-4.44 | 0.96 | 0.26-4.04 | 0.82 | 0.28-4.12 |
mod-circulation-storage | 0.71 | 0.25-6.60 | 0.74 | 0.31-2.79 | 0.86 | 0.29-3.27 | 0.71 | 0.27-2.50 |
mod-source-record-storage | 0.34 | 0.23-1.43 | 0.50 | 0.26-1.86 | 0.53 | 0.31-2.41 | 0.43 | 0.29-1.92 |
Memory
Memory was stable throughout the runs, only a spike here or there, but in a 30 minutes run they were consistent.
1 user | 5 users | 8 users | 20 users | |
---|---|---|---|---|
Average | Average | Average | Average | |
Okapi | 40% | 42% | 40% | 40% |
mod-inventory | 40% | 43% | 44% | 43% |
mod-inventory-storage | 40% | 40% | 41% | 41% |
mod-circulation | 72% | 75% | 72% | 74% |
mod-circulation-storage | 32% | 32% | 32% | 32% |
mod-source-record-storage | 53% | 53% | 53% | 53% |
Recommended Improvements
Anchor | ||||
---|---|---|---|---|
|
- The following JIRAs have been created for mod_source_record_storage:
Jira Legacy server System JIRA serverId 01505d01-b853-3c2e-90f1-ee9b165564fc key MODSOURCE-149
Jira Legacy server System JIRA serverId 01505d01-b853-3c2e-90f1-ee9b165564fc key MODSOURCE-150
- On average, the performance can be improved by 100%. if we remove redundant "EXPLAIN ANALYZE" query call on mod_source_record_storage module. EXPLAIN ANALYZE statements are debugging statements that added a second execution (along with the first one) therefore increasing the overall time by 100%.
- Missing Indexes Warnings are covered by the story
Jira Legacy server System JIRA serverId 01505d01-b853-3c2e-90f1-ee9b165564fc key CIRCSTORE-215 - In mod-inventory-storage and okapi consider using a more efficient JSON package or calling use the existing jackson serialization calls in a different way to address the item: JVM profiling shows JSON de/serialization operations one of the slowest operations.
Appendix
See Attached load-item-records-FF.xlsx for details