
Folio Architectural Blueprint
WolfCon 2020

What is the Folio Architectural Blueprint?
The Folio Architectural Blueprint is the set of identified strategic architectural
changes required for the Folio platform.

While distinct from the Feature Roadmap, some of changes may be required in
anticipation of roadmap features.

In contrast to the Folio Tech Debt list, these reflect development in new areas of
the platform, rather than the reworking of already competed areas.

What are the goals of this meeting?
● Present some candidate items to being added to a Folio Architecture Blueprint

○ Briefly present and discuss each item
○ Goal is NOT to design the solutions here

● Decide whether each item belongs on the Blueprint
● Roughly prioritize the timeframe of each item

○ “Now”, “Soon”, “Later” (or at most which Quarter to start)

● Be in a position to create a list of actionable items that can inform/affect:
○ Feature Roadmap
○ Tech Debt List
○ Development Schedule

Feature Roadmap

Architectural Blueprint Candidate Items
● Security: (fallout of the Security Audit)
● Refactoring Okapi
● Tenant Management
● Full Multi-Tenancy
● Adopt PubSub
● Support for GDPR
● Search Engine
● Users and Permissions
● Automation Engine
● GraphQL
● Database connectivity
● Codex
● Inter-Folio Integration

Security Audit Fallout
What?

The imminent security audit will formally identify
security defects and vulnerabilities with Folio. A
remediation plan will be put in place.

Addressing some of issues will require some
architectural changes in Folio

Why?

A formal audit will elevate the visibility of known
security shortcoming and identify new ones.

We have created a security policy for Folio and
defined at a high level how to address security
vulnerabilities. This will the opportunity to put
those into practice.

Refactoring Okapi
What?

Okapi has evolved to assume too many
responsibilities

● Proxying Gateway
● Tenant context (runtime)
● Dependency management (build)
● Registry (runtime)
● Tenant APIs (setup and upgrade)
● Various Features including; timers; post-

and pre-filters; metrics

The multiples responsibilities would be split-out
into their separate components.

Why?

Making changes in one area of Folio carries a
high risk of introducing regressions in another
area.

The current structure introduces security
vulnerabilities. In addition to an increase surface
area, some capabilities require the use of
elevated permissions (e.g. Tenant APIs) while
other capabilities must be publicly accessible
(e.g. Proxying Gateway).

Allow for the independent evolution of the
capabilities of each separated component.

Tenant Management
What?

Separate out the responsibilities of tenant
management from Okapi.

Possibly two separate components:

● A administrative component for tenant
provisioning and upgrading (including data
upgrading)

● A runtime component for tenant
registration and entitlements,
(“mod-tenant”)

Why?

Improves the security profile by separating
runtime capabilities from administrative
capabilities

Provides the basis for Full Multi-Tenancy
capabilities

Provides the basis for tenant management
tooling (e.g. data migration)

Full Multi-Tenancy - (aka Consortial Support)
What?

Folio currently exists as a highly segregated
multiple single-tenant environment. It is the goal
that Folio should be a fully multi-tenant
environment.

What is missing is cross-tenant capabilities.

This amounts to being able to split the existing
tenant context into two: the originating tenant
initiating operations and the target tenant on
whose data to operate.

Why?

In preparation development of Folio Consortium
features it will be necessary to support
controlled and selective data sharing between
tenants. The individual tenants who are part of a
consortium need to be aware of each other and
be able to selectively access each other’s app
data. (E.g. shared inventory, separate funds)

Full multi-tenancy with cross-tenant capabilities
will allow larger institutions to chose to model
themselves in Folio using multiple tenants

.

Adopt PubSub
What?

PubSub functionality has been developed as
part of SRS. But is has been developed so as to
be generally usable in the platform.

Identify pending features that would benefit from
a PubSub solution and design those solutions
prior to their development on the feature
roadmap.

(Also consider applying PubSub to address
technical debt items.)

Why?

Using PubSub for inter-app communication can
greatly simplify the solution of problems
requiring coordination between different apps.
(E.g. Orders publishes a new order and
Agreements only needs to subscribe to those.)

When applicable, using PubSub can produce a
more robust system by reducing direct
dependencies between modules and creating a
loosely coupled system

Support for GDPR
What?

There is a need to provide support APIs to
facilitate operations against Folio that originate
with GDPR requests such as.

● The right of access
● The right to rectification
● The right to erasure
● The right to restrict processing
● The right to data portability

Adds to module responsibilities, to report user
data

Why?

Fulfilling such requests for Folio currently would
consist of crawling datastores. Individual scripts
would need to be created and maintained.

Folio could provide APIs that automatically
perform the desired actions across any relevant
modules.

Search Engine
What?

The search capabilities of Folio have grown
organically on top of the native search
capabilities of PostgreSQL

Alternative approach is to use a dedicated
search engine, such as ElasticSearch

Why?

As the scope of Folio changes, both in the
number of components and in their complexity
search performance begins to suffer.

There will come a point where no amount of
turning of the search capabilities will be able to
provide adequate performance across the entire
platform. At that point a specialized search
engine will be required.

User and Permissions
What?

Introduce tenant-level and system-level users.

Implement protections around those users to
prevent their accidental modification through
user management tools.

Introduce the concept of user Roles. Distinct
from user groups these can have permissions
directly assigned to them which individual users
can automatically inherit at runtime.

Why?

Temporary workarounds are already in place to
emulate tenant-level users or system-level
users. But these are fragile.

There are security risks and performance issues
inherent in a flat permission model

Automation Engine (aka “workflow engine”)
What?

Adopt an automation engine for use within Folio.
The purpose of which is to provide systematic
sequencing of predefined operations.

This introduces an abstraction layer in order to
declaratively define workflows.

Why?

A declarative approach to workflows provides a
more robust and flexible platform

May eventually be used to enable features such
as Task Lists

GraphQL
What?

GraphQL is an alternative mechanism for
requesting and retrieving data from Folio

● Consolidate multiple queries into one
● Taylor the data response to limit size
● Traverse the data models to simulate joins

Note that a mere convenience implementation to
simply UI module development is not sufficient.
This needs to address the performance issues
inherent in the alternative approach: a business
layer the merely calls underlying APIs

Why?

Long desired enhancement for Stripes to
replace stripes-connect

Performance optimization to more effectively
implement join operations through APIs

Database Connectivity
What?

RMB-based modules support database
connectivity at the module-level only.

Extend that model to support database
connectivity at

● Tenant-level
● Interface-level
● HTTP Method (GET, PUT, POST, ...)

Why?

This offers greater flexibility in how hosted
systems may be hosted, particularly in a
multi-tenant configuration. Possibilities include:

● Sensitive interfaces may use a different
database for storage

● Specific tenants may be provided with
dedicated storage

● Support read-only nodes with different
optimizations from read-write nodes.

Codex
What?

Refresh and update Codex Search to fully
support multiple data sources beyond the two
existing.

Extend Codex Search to support more than just
Instance searching, (E.g. packages)

Implement Codex features beyond searching.
Such as relationship management.

Why?

Additional sources for Codex Search are
becoming available

There is a need to search Codex for other
objects such as packages. This can help reduce
duplicative efforts involving plugins

InterFolio Integration
What?

Allow multiple Folio installations to work
together. Distinct installations might provide
specialized portions of Folio, yet appear as a
single installation from the Tenant perspective

Requires a coordinated and distributed
delegation between the multiple Okapi
installations involved.

Why?

Allows for institutions to subscribe to a shared
cloud-based Folio installation. But also be able
to run a local Folio installation that appears to be
part of same cloud-based Folio.

Allows local Folio installations to run local apps
fully within their control. But rely on a shared
hosted Folio installation for less critical Folio
apps.

Fin

