Lists App - Behind the Scenes

WOLFcon23
2023-08-24

Vince Bareau, Matt Weaver, PK Jacob

2 | www.folio.org

The Lists app aims to provide actionable lists in FOLIO at the
point of need. The Lists app will enable users to create ad-hoc
lists (lists of records) and will contain a set of pre-generated
lists. This session will describe the technical underpinnings for

the Lists App and how it opens up solutions in other areas of
Folio.

folio*

The Folio Lists Application

Folio’s Lists application aims to provide actionable ad hoc lists from Folio, at the
point of need.

e Lists are persisted
e Lists are updatable
e Lists enable various workflows

e Lists can pull data from multiple other Folio applications

Question: But how does it work?

Answer: Very well!

3 | www.folio.org

No really, how does it work?

Y

ui-lists

[mod-lists

Lists

i
Lists
Schema

4 | www.folio.org

FQM

The Lists application is like most
others, consisting of:
e Ul module: ui-lists
e Backend module: mod-lists
o Includes Lists storage

However the heavy lifting is done by
another component that provides it the
data: FQM

folio*

FQM

folio*

What is FQM?

FQM is the Folio Query Machine

e Through a simple API, it allows other modules to access Folio data
e FQM is internal to Folio

e FQM does not require the movement of large sets of data

e FQM directly accesses data in situ

e FQM works across modules

6 | www.folio.org

Some Key FQM Concepts

FQM delivers Record Sets where each Record is made up of a
number of Data Fields.

An EntityType is a queryable relation in Folio. A specific set of related
data fields identified through an ID field.

A Query is used to request the specific records which are to be
retrieved.

FQM uses FQL for its query syntax.

7 | www.folio.org

What is FQL? e

e FAQL is the FQM Query Language Why not CQL?
e MongoDB-like syntax CQL is designed for relational datasets and
: doesn’t work well when data is mostly
o Simple

structured JSON data

O

Unambiguous

o

Powerful, but not too powerful

@)

Trivial to parse

(@)

Designed for use with JSON-structured data

(@)

Simple structure = Easy to build a Ul

e Aligns better to Ul rendering of queries

8 | www.folio.org folio'é‘

Why not CQL?

JSONB may require accessing nested fields:

{"type":
{"type":
{"type":
{"type":

9 | www.folio.org

"Type-A",
"Type-B",
"Type-A",
"Type-B",

"some_object":
"some_object":
"some_object":
"some_object":

e s

"text":
"text":
"text":
"text":

"ping" }},
"pong" }},
"foo" }},
"bar" }},

o

type = "Type-A" and "some-object.text" == "ping".

If a query is required for records having

This requires a JSON path style query

field[type == "Type-A"].some-object.text == "ping'

which is not supported by CQL.

folio

1((

A Sample FQL Query

"item status": {
"$in": [
"Missing",
"aged to lost",
"claimed returned",
"declared lost",

"long missing"

: P
10 | www.folio.org follo

Another Sample FQL Query

11 | www.folio.org

{"$and": [{"active":{"Seq":"
true"}}, {"user patron_ group
_id":{"$nin":["0003a0cc-46e
5-4ebe-8545-¢c917d3d8a673","
06£2d60e-0b07-49ca-b8c7-eld
49808e0b7"1}1}1}

But users don’t want to write FQL queries
any more than they want to write SQL
queries!

folio*

FQM has a Query Builder!

The Query Builder is a Folio Ul Plugin and potentially usable by other applications

[Y VPR o)

o

{ | X Build query L
"item status": {
—_— - Query
" 2 "
$1n . [(item_status in "Missing","Aged to lost","Claimed returned","Declared lost","Long missing") 4

"MiSSing" ’ Field Operator Value Actions

" " ~
aged to lost 4 | Item status Y ‘ |in S Missing X Aged to lost X + W

"claimed returned" ’ Claimed returned X Declared lost X

"declared lost", Longfmissinais

"long missing"

] Test query

12 | www.folio.org

Run query & save

folio*

FQM has a Query Builder!

The Query Builder is a Folio Ul Plugin and potentially usable by other applications

{"$and": [{"active":{"Seq":"
true"}}, {"user patron_ group
_id":{"$nin":["0003a0cc-46e
5-4ebe-8545-c917d43d8a673","
06£2d60e-0b07-49ca-b8c7-eld
49808e0b7"11}1}1}

AKA

"(active == true) AND
(user_patron_group not in [ERM,
Access Only, Do Not Loan Anything])"

13 | www.folio.org

X Build query
Query
(active == "true") AND (user_patron_group_id not in "0003a0cc-46e5-4ebe-8545-c917d3d8a673","06f2d60e-0b07-49ca-b8c7-e1d49808e0b7") 4
Boolean Field Operator Value Actions
l User active - \ ‘== - ‘ |true | + w
|AND v l | User patron group 2 | lnotin S] ERM X Access Only, Do Not Loan Anything X + W

Query would return 87,678 records. Preview of first 100 records.

User last name

User phone

User id

Username

User barcode User first name
0000083233 Luis
0000053207 Kelly
0000082705 Rochelle
0000052461 Leland
000001950 Willie

Russell
Jensen
Anderson
Delgado

Spier

407-245-7954

508-354-4941

415-928-6317

210-852-3631

831-844-2023

000200b8-d318-479e-a26c-4c7eb5eb3fdf
0004bf66-9509-49f0-a2ac-bffc99c9a711
00223f52-ee60-494a-92f3-4deb2b062f97
002f535e-fc0b-4275-bfb3-2113199f8b2e

006f74a8-ef76-480d-ale7-00113cd47c58

username:83233

username:53207

username:82705

username:52461

username:1950

Run query & save

folio*

How does FQM access data from other Applications?

e FQM exposes data from other modules via the FQM DB schema

e As with all microservices, the FQM schema is fully controlled by FQM itself

e FQM itself is agnostic as to how FQM schema is populated with data

O

O

O

O

Data could be harvested from Kafka events
Data could be replicated from a data warehouse in Folio
Data could be provided by DB views pointing at other schemas

FQM doesn’t care how the data get there, as long as it’s there

e By default, FQM uses Views

14 | www.folio.org

Security

e FQM Manager uses standard Folio API interface module permissions
e EntityTypes are secured at a more granular level.

o FQM Manager maintains and assigns access control “permissions” for each
EntityType
m Thus a given user may be granted access to query a particular EntityType
m In a future release data would restricted to the level of source data fields

m For this FQM Manager could benefit from the Roles and Capabilities model

15 | www.folio.org

The FQM Architecture

- -

Lists

16 | www.folio.org

- FQM Manager W
' FQM I . I (mod-fgm-manager)
Schema® ' I :

Source data FQM Entity Type

i Schema | | gefinitions
circulation* ! users* ! inventory* ! fees/fines* ! etc* !

* it is recommended that FQM be installed on a Folio Read Replica

folio*

Other uses of FQM

FQM is an enabler for other areas of Folio.
It is currently being considered to empower several Applications other than the Lists app.
e Bulk Edit:

o Generate the select lists of IDs on which to operate through cross-module queries
e Delete Functionality

o Provide cross-module metadata for each Rule to determine eligibility to delete a particular record
e Data Export

o Generate the data sets required for export
e Data Import

o Optimize matching rules for record import

e Other Applications

o Such as native Folio operational reporting

17 | www.folio.org

FQM and Bulk Edit

The Bulk Edit application provides simultaneous field editing across a select
group of records of a single record type.

It is a two part process:

1. Establish the desired subset of records of a particular

a. Typically with conditions relying on other record types,
b. For example: update all inventory.item records that were loaned in the last 29 days.

2. Apply the changes to the subset of records.
The first item (1) could be ideally fulfilled by FQM

18 | www.folio.org

FQM and Delete Functionality

By example: before deleting an Inventory.ltem record, we must first determine that there are:

no open loans

no pending requests
no pending orders
no fes/fines

Nno course reserves
etc...

More generally this would be formalized as a Rule for Deleting a particular entity. Evaluating
the Rule requires examining particular fields in different modules. Only when all have
returned “clear” is it safe to delete the entity

Rather than (re)implement the functionality in the delete algorithms, it makes sense to use
FQM for this purpose. For each Rule, FQM could maintain a single table which delete
functionality could consult

19 | www.folio.org

L i T

Other Ul !

FQM: System View S

Lists Ul Bulk Edit Ul
Gud=— — @
e Supports Multiple Applications [I
° LiStS App Frontend
o Bulk Edit =000 i e,
o Delete Functionality - ! Backend
o Data Export e
o Data Import !
o Other (e.g. Reporting) S,] Ry - ‘
e Reusable Query Builder oot operstors e P
plugin R j T— ’
e Provides an Edge Api for
external integration (pending) [Agaregation]

==

i . Sie
20 | www.folio.org fOIIO

Thank you

folio*

