
| www.folio.org1

Lists App - Behind the Scenes
WOLFcon23

2023-08-24

Vince Bareau, Matt Weaver, PK Jacob

| www.folio.org2

The Lists app aims to provide actionable lists in FOLIO at the
point of need. The Lists app will enable users to create ad-hoc
lists (lists of records) and will contain a set of pre-generated
lists. This session will describe the technical underpinnings for
the Lists App and how it opens up solutions in other areas of
Folio.

| www.folio.org3

The Folio Lists Application

Folio’s Lists application aims to provide actionable ad hoc lists from Folio, at the
point of need.

● Lists are persisted

● Lists are updatable

● Lists enable various workflows

● Lists can pull data from multiple other Folio applications

Question: But how does it work?

Answer: Very well!

| www.folio.org4

No really, how does it work?

Listsui-lists

mod-lists Lists
Schema

FQM

The Lists application is like most
others, consisting of:

● UI module: ui-lists
● Backend module: mod-lists

○ Includes Lists storage

However the heavy lifting is done by
another component that provides it the
data: FQM

| www.folio.org5

FQM

| www.folio.org6

What is FQM?

FQM is the Folio Query Machine
● Through a simple API, it allows other modules to access Folio data
● FQM is internal to Folio
● FQM does not require the movement of large sets of data
● FQM directly accesses data in situ
● FQM works across modules

| www.folio.org7

Some Key FQM Concepts

FQM delivers Record Sets where each Record is made up of a
number of Data Fields.
An EntityType is a queryable relation in Folio. A specific set of related
data fields identified through an ID field.
A Query is used to request the specific records which are to be
retrieved.
FQM uses FQL for its query syntax.

| www.folio.org8

What is FQL?

● FQL is the FQM Query Language
● MongoDB-like syntax

○ Simple

○ Unambiguous

○ Powerful, but not too powerful

○ Trivial to parse

○ Designed for use with JSON-structured data

○ Simple structure ➡ Easy to build a UI

● Aligns better to UI rendering of queries

Why not CQL?
CQL is designed for relational datasets and
doesn’t work well when data is mostly
structured JSON data

| www.folio.org9

Why not CQL?

JSONB may require accessing nested fields: If a query is required for records having
type = "Type-A" and "some-object.text" == "ping".

This requires a JSON path style query
field[type == "Type-A"].some-object.text == "ping",

which is not supported by CQL.

[
{"type": "Type-A", "some_object": { "text": "ping" }},
{"type": "Type-B", "some_object": { "text": "pong" }},
{"type": "Type-A", "some_object": { "text": "foo" }},
{"type": "Type-B", "some_object": { "text": "bar" }},
]

| www.folio.org10

{
 "item_status": {
 "$in": [
 "Missing",
 "aged to lost",
 "claimed returned",
 "declared lost",
 "long missing"
]
 }
}

A Sample FQL Query

| www.folio.org11

{"$and":[{"active":{"$eq":"
true"}},{"user_patron_group
_id":{"$nin":["0003a0cc-46e
5-4ebe-8545-c917d3d8a673","
06f2d60e-0b07-49ca-b8c7-e1d
49808e0b7"]}}]}

Another Sample FQL Query

But users don’t want to write FQL queries
any more than they want to write SQL
queries!

| www.folio.org12

{
 "item_status": {
 "$in": [
 "Missing",
 "aged to lost",
 "claimed returned",
 "declared lost",
 "long missing"
]
 }
}

FQM has a Query Builder !
The Query Builder is a Folio UI Plugin and potentially usable by other applications

| www.folio.org13

{"$and":[{"active":{"$eq":"
true"}},{"user_patron_group
_id":{"$nin":["0003a0cc-46e
5-4ebe-8545-c917d3d8a673","
06f2d60e-0b07-49ca-b8c7-e1d
49808e0b7"]}}]}

FQM has a Query Builder !
The Query Builder is a Folio UI Plugin and potentially usable by other applications

AKA
"(active == true) AND
(user_patron_group not in [ERM,
Access Only, Do Not Loan Anything])"

| www.folio.org14

How does FQM access data from other Applications?

● FQM exposes data from other modules via the FQM DB schema

● As with all microservices, the FQM schema is fully controlled by FQM itself

● FQM itself is agnostic as to how FQM schema is populated with data
○ Data could be harvested from Kafka events

○ Data could be replicated from a data warehouse in Folio

○ Data could be provided by DB views pointing at other schemas

○ FQM doesn’t care how the data get there, as long as it’s there

● By default, FQM uses Views

| www.folio.org15

Security

● FQM Manager uses standard Folio API interface module permissions

● EntityTypes are secured at a more granular level.

○ FQM Manager maintains and assigns access control “permissions” for each
EntityType

■ Thus a given user may be granted access to query a particular EntityType

■ In a future release data would restricted to the level of source data fields

■ For this FQM Manager could benefit from the Roles and Capabilities model

| www.folio.org16

The FQM Architecture

* it is recommended that FQM be installed on a Folio Read Replica

Lists

FQM

FQM
Schema*

FQM Manager
(mod-fqm-manager)

FQM
Schema

EntityType
definitions

Source view
Source view

Source view
Source data

circulation* users* inventory* fees/fines* etc*

| www.folio.org17

Other uses of FQM

FQM is an enabler for other areas of Folio.

It is currently being considered to empower several Applications other than the Lists app.

● Bulk Edit:
○ Generate the select lists of IDs on which to operate through cross-module queries

● Delete Functionality
○ Provide cross-module metadata for each Rule to determine eligibility to delete a particular record

● Data Export
○ Generate the data sets required for export

● Data Import
○ Optimize matching rules for record import

● Other Applications
○ Such as native Folio operational reporting

| www.folio.org18

FQM and Bulk Edit

The Bulk Edit application provides simultaneous field editing across a select
group of records of a single record type.

It is a two part process:

1. Establish the desired subset of records of a particular
a. Typically with conditions relying on other record types,
b. For example: update all inventory.item records that were loaned in the last 29 days.

2. Apply the changes to the subset of records.

The first item (1) could be ideally fulfilled by FQM

| www.folio.org19

FQM and Delete Functionality

By example: before deleting an Inventory.Item record, we must first determine that there are:
● no open loans
● no pending requests
● no pending orders
● no fes/fines
● no course reserves
● etc…

More generally this would be formalized as a Rule for Deleting a particular entity. Evaluating
the Rule requires examining particular fields in different modules. Only when all have
returned “clear” is it safe to delete the entity

Rather than (re)implement the functionality in the delete algorithms, it makes sense to use
FQM for this purpose. For each Rule, FQM could maintain a single table which delete
functionality could consult

| www.folio.org20

FQM: System View

● Supports Multiple Applications
○ Lists App
○ Bulk Edit
○ Delete Functionality
○ Data Export
○ Data Import
○ Other (e.g. Reporting)

● Reusable Query Builder
plugin

● Provides an Edge Api for
external integration (pending)

| www.folio.org21

Thank you

