
Theme: App Store

Time: June 30, 2022 08:00-9:30pm (GMT+8)

Attendees:
From FOLIO community（10 attendees：2CC，1 PC，4TC；Index Data 3；EBSCO 3；K-Int 2；
UChicago 1；LehighU 1）:
Sebastian Hammer (President, Index Data)
Mike Taylor（Software, Index Data）
Peter Murray (PC Member, Open Source Community Advocate, Index Data)
Vince Bareau（Enterprise Architect, EBSCO）
Zak Burke（TC Member, UI dev, EBSCO）
Harry Kaplanian（CC Member, EBSCO）
Ian Ibbotson（CC Member, Director@K-Int）
Marc Johnson（TC Member, Knowledge Integration）
Tod Olson（TC Member, University of Chicago）
Maccabee Levine (TC Member, Senior Library Application Developer, Lehigh University)

From China’s community（9 attendees）:
Keven Liu (CC Member, Deputy Director, Shanghai Library)
Zhou Gang (PC Member, Project manager, Shanghai library)
Zhang Chunjing (Secretary of China Community, Shanghai Library)
Jiang Sha (Technical Director, Jiatu)
Xu Chi (Manager, Jiatu)
Cheng Bei (Associate Dean of Shandong University Library)
Xiao Zheng (Associate Dean of Xiamen University Library)
Dong Xiaoju (Associate Dean of Shanghai Jiaotong University Library)
Lucy Liu (Product Owner, Folio China)

Notes:
1. Getting to know each other
2. Review of App Store/Marketplace/Folio Factory discussions in the FOLIO

community
● Summary of communications on Slack #app-store before the meeting: ​​

App Store was mentioned in the FOLIO community before, but it was never
formally submitted to any decision making bodies as a proposal. A mechanism
needs to be in place so that people can find what apps are available in FOLIO or
work with FOLIO. However, the App Store might not be the right model.
Reasons:

○ Modules are heavily inter-dependent. And we don’t have a plan to remove
or reduce dependency in the community for now.

○ We don't have a definition of an App / module or what artifacts are
included in it. So it’s hard to say what things are in the App Store and
what it means to install them.

https://app.slack.com/team/U219F3XG8

● In meeting discussions:
○ Tod: There's an aspiration to share code as convenient as possible. The

challenge now is that modules are intertwined. For example, an acquisition
action will interact with Inventory and Finances in both ways. We haven’t
figured out how to address this issue yet.

○ Jiang Sha: Modules are inter-depending on FOLIO apis. Could we leave
the apis still? We can have different modules implement the same apis and
switch from one module to another. Can this reduce inter-dependencies?

○ Seb: That was part of the vision when the system first took shape. Agree
with Tod. Thinking something like Inventory. There are so many cross
dependencies. Thinking of replacing all the inventories, a lot of different
apps that you implement. Some of those apis might be specific to
particular implementation and particular data model. Replacing Inventory
means you have to reimplement so many things to support the same set of
apis. Inventory may be unusual. How many apis does it support?
Instances, holding, items, and so on. If you want to replace an entire app,
you would have to prepare to fill in the dependencies. They may not be
well documented as they should be.

○ Mike: Every app is supposed to and must define apis in machine readable
form. Replacing Inventory is the single most dramatic openhouse surgery
we could sense. If we do want to do it, in principle, it wouldn’t be an easy
thing to do, but would be simple, because it would be well defined what
things are in place that an inventory needs to do. To me, an app store is for
adding different modules from different places, as some universities have
experimented with the idea.

○ Marc: Agree with folks that, in theory, we have the apis in place, the
things we could use to replace things. And the interface definitions are
what we would use to do that. In practice, it is not quite possible because a
lot of the things that different parts of the system rely on are not part of the
definitions. The machine readable interfaces that we have only tell you the
most basic stuff about the apis. They don’t tell you a lot of the things that
happen like what things can be searched, or what two fields can be altered
or used together. Some values might only be validated in those
circumstances. All these things have side effects. So we replace Inventory,
but there is a background task in Inventory that does stuff. And the
interface knows nothing about that. So we lose a lot of functionality. In
practice, the challenge is way beyond api definition.

○ Keven: We are more interested in using the app store for applications
other than the core library applications, i.e., not the ILS modules, but the

new demands and new apps. They can usually loosely be coupled and
clearly defined with apis.

○ Seb: Agree with Mike and Marc that we shouldn’t get too hung up on the
challenges of replacing the core heavy apps that are interdependent with
each other. So maybe we should try the new apps, and shouldn’t hang up
on the legacy apps.

○ Keven: In China, we have more needs for new modules and new
functionality for our platform. So we will not advertise core modules to
libraries. They hesitate to change it because they have already had it. We
advertise the new functionality and they will accept the new platform.

○ Vince: Yes. We have several problems with the legacy system. One is the
problem of replacing things. Adding new functionality is simpler. There’s
another form of dependency - the vertical dependency. Which means
defining the relationship between modules: what are the backend modules
and the frontend modules? We have a pretty good scheme horizontally.
But UI modules are tied to backend modules. The top-to-bottom
relationship is not very well defined and needs to be dealt with before we
build an app store.

○ Tod: The kind of adding applications around the edges and that kind of
extension of functionality is much more approachable. There’s a lot of
value across the globe for that kind of thing. We have various kinds of
small applications that we try to look for ways to trade between libraries
or some pieces of functionality that might be contracted for. Some
significant percentage of places would like X module to do a particular
integration or whatever. To make it easy to bring in, that would be
fantastic.

○ Keven: Let me take some examples. At Shanghai Library, we will have
some very special modules, such as remote borrow, LDT (something
beyond LDP), resource reservation, navigation, robot services and more.
We would like to make them standard after Shanghai Library goes live.
We hope such modules can be used by other libraries.

○ Seb:
■ It would be really nice to be able to extend the platform freely.

Everybody has ideas of things they would like to add. And some of
them wish to be in the business to add those things.

■ Defining a mechanism to do this is a real necessity for the
platform. The experience that we have had of working with pubs to
add new functionality is that the core folio community that is
responsible for the roadmap of the core functionality is not well set
up to process and validate new apps coming from the sideline. So

the process of adding new functionality to the flower releases has
felt very difficult, kind of complicated. Like we are almost sort of
imposing, when we bring this requirement, we see as one customer
sees. But does everybody see it? Should everybody spend
resources validating these apps and think about where these apps
fit in? I don’t think that’s anything negative about the core
roadmap governance. It just wasn’t really decided to handle all
possible things that might pass through potential app stores. So
coming up with a scheme that would allow us to add functionality
without going through a shared roadmap or a shared priorities is
pretty important to allow the community to grow as we all hope it
would.

■ There are some technical issues in terms of how you package these
apps to make this happen. But there are also some
organizational/community issues that we have to deal with in terms
of quality, quality commitment that we can make to each other,
how we approach testing for things that are not part of the flower
releases at the joint community testing, and other things like that.
It’s an essential challenge for folio to deliver the promise of an
innovation platform.

○ Marc: The trust and the social contract around this is probably more
important than the technical implementation.

3. The App Store presentation by Jiang Sha
● Goal: Libraries could choose APPs provided by both community and business

companies. In high demand in China’s market. Not intended to replace the core
functions of FOLIO, but to provide new functionality such as remote borrowing,
etc.

● Functions
○ Manage APPs for an online FOLIO system
○ Display APPs for user selection
○ Deal with the APP activation requests
○ Enable & Disable APPs in real time

● Architecture: Three layers in the architecture.

○ Storage has two parts: Role-, APP-, Request-storage purely connected to
the database. They store information about apps, roles and requests in the
tables of databases. Module-storage collects both database and Okapi. It
stores module info in Okapi and maintains this message through Okapi
API so that we can manage modules in Okapi.

○ Business logic: Two modules. Role-management manages relations
between role and permissions. APP-request-management deals with the
workflow of app activation requests.

○ UI: Three modules. Management-UI is for the app store admins to manage
app info and user requests. APP-store-UI is for users to search and choose
apps and submit requests. APP-Menu-UI is for customization of the
Stripes code so that apps can be enabled and disabled in real time.

● Business Logic
○ Definitions

■ Role: Collection of permissions. The permission groups in folio
lack the features we need. When we enable an app, we should
grant permissions to certain users so that someone can manage the
users for that??? For example, in the cataloging app, there should
be at least three roles - the app admin, the cataloger, and the
receiver. When it’s realized, all the three roles should be granted to
the admin of this tenant. And this admin can give these roles to the
users of the library.

■ Module: OKAPI module + basic Module. Currently in folio, we
don’t manage module information with modules. We only store
modules in Okapi. But when we set up an app, we should have
module information. The info from Okapi is not enough. So we set
up Module-storage to store information, extend it and add features
such as is this module for a tenant? Does this module have
dependency on other modules? And more.

■ APP: Collection of mouldes / roles. Folio hasn’t clearly defined an
APP yet. We define apps as a collection of modules and roles. So
the way we set up an app is to select some modules and some
permissions to form the roles. Then an app is created. A user can
request an app. The app admin can enable the app for the user.

○ APP store workflow

○ Manage modules

○ Manage APPs

○ Manage APP request

4. Q & A
● Mike: What purposes does the “role” have? How is the role different from the

high level permission sets, given that some roles have existed in folio and have
been defined in that way? What roles in the app store go beyond that?
Jiang Sha: We have permission sets to collect permission. But when we initialize
an app, we should have an indicator. We should know who is the admin of that
tenant so that they can get all the permissions of this app. The key reason is that
when managing permissions, we should have someone to manage all the roles.
We have the rules that you can only grant other people the permission you have.
So we need someone to be the super admin. We can’t tell whether someone is the
super admin or other library staff. So we designed “role” to contain those features.
We need more attributes, for example, the super admin indicator.

● Seb: The proposal is well thought through. As to the roles, one concern that
comes to my mind is that libraries are structured very differently. And the way
libraries organize themselves can be different. It might be useful to think of ways
to avoid tying libraries down to specific structures or organizational structures.
Especially when we move away from the core apps and into the new apps that we
want to see added, you can imagine confusions of the roles arising if every app
passes opinions of the role associated with this type of app. I can certainly see the
value of every app creating permission sets. I’m worried about the idea of creating
too much complexity on the admin side. Maybe we can extend the permission sets
to include the attributes associated with “roles”?
Jiang Sha: Every app should have its own roles. At some libraries, there might be
hundreds of roles.
Seb: App could introduce permission sets or roles. Maybe that can be very high
level attributes. Also associate with those permission sets will make it very easy
to navigate them. Maybe every app can introduce a super user and a regular user,
and several roles. So when an app is introduced, it can automatically assign
certain privileges to a super user to be able to draw out regular usage, or you only
give privileges to individuals.

● Vince: The idea of having roles in folio is a long standing debate. I do think there
are possibilities with the “role” model. By which I mean, the way the permissions
work now, they are very much bottom up. They are defined by the applications,
and the applications inject new permissions whenever they want. They can
certainly be grouped in terms of permission sets, which help solve the issues that
there are too many permissions to manage. Roles can be more than just
permission sets. One way, which we don’t do in folio, but it can be part of the
model where we manage at higher level destruction. Also, roles can play a part in
the structure. Imagine we have the app store here. And it’s possible that one of the
requirements for an app to join the app store is to “we expect the app to have the

following roles”, the roles are defined by the folio set level of things. And then
the application conforms to that. So it’s a way of allowing patrons to insert
themselves into an existing structure. There are differences across libraries. But
we can have a rigid set of roles. The roles need to be definable and flexible. So we
need a separate layer where we can do that sort of management. But I am not sure
why the role is put in this proposal for an app store at such a high level. It’s
possible to implement the app store without the role. My question is: who is the
intended user in this case? We all know the model of iPhone or other smart
phones, where you can add apps to the phone. And it’s the choice of the
individual user how to do it. In folio, you don’t want one librarian to install some
apps and another librarian to install other apps. This should be done at a higher
level. The app management needs to be done at the tenant level. Is that what is in
your mind in this proposal?
Jiang Sha: Our proposed app store is not for mobile apps. Our app is a collection
of folio modules and roles. In an app, we need to grant all the roles to the super
admin of the library/tenant, who can give roles to others.
Vince: The super admin will install an app from the app store into folio. That app
is not potentially available to all the librarians. But only individual librarians
based on their role, will be granted access to that new app. The idea is that the
decision to install the application is made by the super admin, the administrator of
the library. It’s potentially available to everybody. But only some people will be
granted access based on their role. That’s my understanding.
Jiang Sha: Correct.

● Vince: Do you envision your app store to be something that is in the context of a
single installation? Or, is the app store something that is made available to a large
number of folio installations? You have multiple universities. Each of them will
have their own folio installation. Will they share a common app store? Or, is the
app store a separate feature on each of their installations?
Jiang Sha: For now, I think every folio installation should have its own app store.
Vince: Do you see the need for a super store that provides apps to the individual
stores?
Jiang Sha: That’s very challenging to manage the remote folio system.

● Keven: I think there’s another possibility to implement the app store. Maybe we
can have two levels. We can develop the core level, which is maintained by the
Chinese folio community. The private companies may want their apps to join the
app store. And there might be compatibility problems. We, as the community, can
issue the specifications to describe the functional requirements, frontend,
backend, etc.
Seb: We’ve had some internal conversations about the app store ideas at Index
Data. Our thoughts had been about how to package and distribute apps. So the

different operators in folio, whether you are libraries, consortium, service
providers, might easily download apps and install them, making them available
without being part of the flower release. We haven’t really thought about this in
the context of your work. But it feels to me if we think about a super app store, in
my mind, that might be potentially sth not going to happen by itself in the
repository or some place, maybe on Github, where an operator of folio can easily
download a set of files that correspond to an app and make them part of the local
folio operation. And have some models for trusts. Once they are part of that, any
tenant admin, a library super admin, can activate that particular app for that
library. Maybe that could be a way to realize the two level app store idea.
Vince: That touches a couple of things that you mentioned earlier - trust and
testing. One important aspect of any app store, in particular third party apps
provided, there needs to be a measure of validation or certification. There needs to
be a process that can help establish that the apps won’t break the system. We need
to ensure a happy secure environment that doesn't introduce bad practices or
security vulnerabilities. We need to ensure it has the level of support it needs. So
there is a mechanism that really needs to be established. And for the more
established trust, meaning that if an app has been approved and has been reviewed
by some group or community based selection committee, it has now been blessed
and is valid to be installed in a particular version of folio. It’s more than a Github
or repository. We need a structure around the super store or app store. One of the
ideas I also heard from China was there were multiple systems of folio which
could communicate with each other. So it’s possible that this super app store could
be a dedicated specialized version of folio, whose purpose is to provide apps to
other folio systems. And it inherits the same role models or whatever you put in
place for the systems.
Keven: That’s what we thought to do. We plan to have some mechanism to test
the modules from the private companies and to certificate. We do that for the
libraries and for them to choose partners. It’s the service from our community to
the libraries and the help to the companies that can help them find the market.
Mike: The danger here is we could weaned out with certification purchase with
heavy weight that we have for the moment for flower releases …I wonder
whether the more distributed goal is have every packet signed by the organization
that created the app or it’s up to the individual customer to figure out who they
trust, who the organization is, and what the organization’s procedures are.
Keven: We have a group of companies to help us implement folio. We have
competing companies. We just want to give help to our colleagues, our library
partners. They need us.
Marc:

○ One level is not sufficient for the discrepency. We need at least three levels
of app stores.

○ Some folks are talking about a peer-to-peer trust based model. That
doesn’t require an app store to exist. A hosting provider can talk to the app
provider directly. An app store is an intermediary of trust. We need to first
decide what trust model we need before we dive into the complicated
technical issues.

Keven: It’s up to the libraries or the user. If a library wants to partner with a
vendor, it’s ok. They can choose to use all the local modules if they can pay the
cost. We just serve the common needs.
Tod: There’s the business of getting an app available to a tenant. That’s one
problem. Once an app is available to a tenant, how do we make it easy for the
library, for the tenant administrator, to make sure the correct people, the users
have access to the ability to see and interact with the apps. It makes sense to me to
think of the two levels separately. With this proposal, there is a potentially rich
and challenging issue around getting the roles right. Providing a better
environment for managing how apps are exposed to individual library users and
maybe some additional benefits could come out of that. And maybe the issue of
how those apps become available into a tenant and could be treated as a separable
issue.

● Marc: This meeting specifically asked for technical feedback, so I'm going to
give you my two biggest pieces of the technical feedback on this:

○ No.1, do we have to do with the dynamic loading of the dynamic enabling
of a module and the deployment of it? First, any generalized app store are
not relying on using Okapi’s internal deployment mechanisms for
deploying the module because each hosting provider, each organization,
each operating library that runs a folio implementation now can choose it
because currently we don't constrain it to use a variety of different
mechanisms to manage deployment and all of those kinds of things. That
means that a general app store, the finishing, cannot rely on necessarily
using docker images, or it cannot certainly rely on those docker images
being spun up by Okapi because that might be totally inappropriate for
that hosting provider's infrastructure. So there are significant challenges to
address with it. Once we've figured out what the files are, what the bundle
of stuff is that defines an app, and it's been sent in from that you've pulled
it from the app store, actually manifesting that in the system, there's some
significant technical challenges to do to actually achieve that in a way that
would work that isn't couple to a specific hosting providers, like
infrastructure, because if you do that, then it's not really a general app
store, it's just something a hosting provider did.

○ And the same can be said about the front end. It's nice to say that we might
have a way of automatically granting the roles and that permission sets all
that stuff like that, yes, that's not that hard. And what might be harder, is
the UI module. Something has to take that thing and rebuild the bundle for
that tenant to redefine it to include that module in it, because without that,
granting permissions to somebody to say “you have access to this new
wonderful module” won't do anything about it, or will do anything at
worst, it will fail because actually the app itself isn't in the UI that user is
using. And every user will likely have to rebuild, have to reload the UI in
order to get access to that. But as far as I'm aware, we don't have the
ability to hard reload every user currently running inside folio/inside the
browser with new UI modules. We currently distribute/host a static bundle
that has to be rebuilt.

○ So specific technical feedback: the actual mechanisms for deploying or
putting these things into the infrastructure are hard to do right now. And if
you want to build this, those are the two major technical hurdles I would
be trying to point out.

Sha Jiang: The deployment is not included in our proposal, we should prepare the
deployment before the activation of apps and by the UI. So we said we should
have a combination of Stripes Core, so that we can activate apps and the bundle.
Marc: If you take deployment out of the scope of this, there's a challenge there,
which is that effectively somebody can choose something in the app store, and
then it's basically up to the hosting provider to figure out how to actually make
that happen for real. It's very valuable for a hosting provider to build. I would
imagine I'm sort of surprised that hosting providers haven't already started to
build it. But that's not a general app store. That's an app store that's dependent
upon an individual hosting provider. So as long as we understand that distinction,
I think it's not the important thing.

Chat history:

00:46:58 Mike Taylor: Tiewei Liu, you have my sympathy!
00:50:46 Ian Ibbotson: harry :)
00:50:53 Ian Ibbotson: then pick someone
00:56:20 Ian Ibbotson: So sorry Maccabee!
00:57:01 Tod Olson: I should have added that at UChicago we have a long history of
programming around the edges of the library system, to extend functionality or integrate with
other systems.
01:09:50 Tod Olson: Vince, we are hearing a lot of echo in your sound.

01:11:38 Marc Johnson:The belief that itâ€™s easy to extend is based upon the assumption
that those apps arenâ€™t themselves inter-dependent and that the core doesnâ€™t end up caring
about them
01:16:37 Ian Ibbotson: Sounds a lot like 2 live mics
01:16:39 Peter Murray: I've never seen Zoom do that before...
01:29:09 Peter Murray: Question: is the missing role functionality (functionality that isn't
in the existing "permission set" mechanism) directly related to the app store proposal, or is the
missing functionality a broader problem in FOLIO?
01:31:16 Sebastian Hammer: I wonder if roles could be implemented as an attribute
(flag) attached to permission sets, so we refine the existing permission model rather than create a
new one. So some permission sets correspond to roles and others do not.
01:31:19 Tod Olson: Peter: speaking personally, I think roles address a broader issue,
and would have benefits beyond this proposal.
01:31:48 Peter Murray: Thank you, Seb and Tod.
01:32:24 Marc Johnson:What would the purpose of the flag be?

A role is only a collection of permissions (to the system at least)
01:32:33 Mike Taylor: I believe there are already high-level permissions sets in the
standard FOLIO configuration that implement roles, e.g. cataloguer
01:33:13 Vince Bareau: A role can be more than just a set of permissions.
01:33:18 Ian Ibbotson: +1 ^^
01:34:44 Marc Johnson:What is the difference between a role and a set of permissions?
01:39:13 Mike Taylor: Apps include modules, and modules can (and do) define
permission sets.
01:39:34 Marc Johnson:Modules can also be part of more than one app ðŸ˜ƒ
01:39:57 Marc Johnson:Based upon the idea that apps are the set of all the things they need
01:40:11 Mike Taylor: Each module, by convention, defined a permission
`module.NAME.enabled`, which is what you give to a user who you want to have access to the
app.
01:40:25 Marc Johnson:Only the UI modules do that
01:40:26 Mike Taylor: I think everything that this proposal wants roles to be able to do,
permissions can and do already cover.
01:40:44 Mike Taylor: @marc Yes -- but only UI modules are the face of apps.
01:40:56 Marc Johnson:The gap seems to be associating semantic meaning to a role
01:41:11 Mike Taylor: So ... associate a semantic meaning to the role?
01:42:50 Marc Johnson:Yeah, I get the sense that folks think of roles having semantic
meaning yet permission sets do not
01:43:29 Marc Johnson:I think Vinceâ€™s point might be more important.

That a role can be app context independent and mean different things in each app

01:44:00 Ian Ibbotson: Right RBAC is very well understood as a general mechanism in
computing at the moment - FOLIO is slightly off the beaten path here
01:45:49 Marc Johnson:It is kinda inverting the model.

Roles are defined and then an app decides what access that permits.

As opposed to an app defining granular chunks of access and folks combining them together
01:48:18 Mike Taylor: Thanks, Marc. That approach is of course perfectly well
implementable in terms of FOLIO's fine and flexible permission mechanism.
01:50:06 Marc Johnson:Implementing the inversion of pre-defined roles having different
meaning in apps using permission sets could be challenging

It would likely require a shared module that all of the apps that want to use a role would depend
upon
01:55:26 Mike Taylor: Marc, yes, that sounds right. Why is that challenging?
01:57:30 Marc Johnson:In part itâ€™s challenging because it increases inter-module
dependencies

A fundamental notion of FOLIO is that modules depend upon interfaces.

Permissions are not part of interfaces. Thus these would be concrete implementation
dependencies on implementations not interfaces.
02:00:36 Mike Taylor: Actually, whether permisions are part of interfaces is an open
question, since there is at present no separate machine-readable representation of an interface.
See discussion at
https://github.com/folio-org/okapi/blob/master/doc/proposal-to-separate-interfaces.md#difficultie
s
02:01:05 Sebastian Hammer: Good observation Marc
02:01:34 Mike Taylor: Nothing stops us from stating that (for example) mod-roles does
nothing but define some high-level permissions, and that those permissions *are* its interface.
02:04:55 Maccabee Levine: Two logistics questions since the meeting is almost over.
Will the proposal be shared to the Slack channel? And what are the next steps for discussion?
02:07:23 Marc Johnson:To me, interfaces today in FOLIO are manifested as RAML or
OpenAPI docs alone.

I understand folks donâ€™t agree with this model.
02:09:23 Ian Ibbotson: Apologies all - have to leave for next meeting. Will keep track on
slack - thanks for an interesting chat.
02:10:21 Mike Taylor: Marc's point about Okapi's depoyment facilities is right on target
and very important.

02:10:37 Peter Murray: Thank you for the discussion, everyone. The recording of the
meeting will be in a directory at https://recordings.openlibraryfoundation.org/folio/ â€” I need
to disconnect to get ready for the product council meeting.
02:11:03 Harry: I need to leave. Thank you for this presentation and discussion.
02:11:20 Keven Liu: thank you all
02:12:57 Sebastian Hammer: Thank you for tackling this incredibly important but also
challenging area straight on. If we can make this work it will be a huge benefit for the
community
02:13:31 Keven Liu: We will come back to you when we got problems
02:14:11 Maccabee Levine: Thank you for all of this helpful work!
02:14:23 Tod Olson: Thank you everyone!
02:14:55 xu chi: thank you everyone

