Theme: Shanghai library FOLIO project
Time: May 31, 2022 07:00pm (EST) / June 1, 2022 07:00am (GMT+8)

Attendees:

Martin Tran (Team Lead, Performance Task Force of FOLIO, EBSCO)
Vincent Bareau (Enterprise Architect, EBSCO)

Gang Zhou (Project manager, Shanghai library)

Sha Jiang (Technical Director, Jiatu)

Lucy Liu (Product Owner, Folio China)

Notes:

1.We are testing circulation modules in the SHL’s environment and are trying to add stress

to the system. When there are 10 queries per second, the response time is about one second

per query, which is acceptable. However, when there are 20 queries per second, the average
response time is about 3-4 seconds per query. The longest time can be over 10 seconds. How
can we reduce the response time? (Sha Jiang)

Martin:

e Do a capacity test and slowly increase the number of users every 2 or 5 minutes. That
way, you can see when exactly things start to fall apart. Maybe there is an inflection point
somewhere between 20-30 users. And if we can know which point that is, we can look at
other graphs to see what is causing the problem. Maybe it’s the modules CPU, modules
like mod-inventory-storage or mod-inventory that get stuck at that point, or it’s the DB
that gets overwhelmed. With KR 1/O, you can set the ramp up time of the users to be 5
minutes per user. For 30 users, you will need at least 150 minutes to run the test. For each
user, you can be sure there’s no spikes within the 5 minutes. So do a manual or automated
capacity test so that you can look at the graphs carefully as you gradually add more users,
so you can see where in the system, database, modules or even instance begin to pile up.
Maybe Okapi is a choking point, too. So we need to know when it happens.

e Something to clarify:

© What is the number of concurrent users tested?

o Do you have the general JMeter graph which shows the rate of call in checkout
and checkin?

o Do you call the checkout workflow APIs or just the POST /checkout-by-barcode
API call?

Sha Jiang: Answers to the questions:

o 30 users.
o No.
o Through many APIs.

Martin: We need to see the module graph for CPU. If you do incremental addition of users, we
would see each relevant module in the system, i.e., okapi, circulation-storage,
circulation-inventory. Even inventory-storage, mod-authtoken, mod-permission may play a role

as well. We can see how they behave as we add more users. If one module CPU starts to take off
compared to the other ones, that may be the problem. Then we can dig deeper to see whether or
not that module is touched to the database. If the database is the problem, you can turn on the
slow query filter in the database so that it can catch the slow queries.

Sha Jiang: We found no slow queries in the database.
Martin: If so, was the database CPU usage pretty constant, as expected?

Sha Jiang: We have the database monitor in the document. We can see a peak in the CPU usage
for DB services. But the highest CPU usage was just 30 percent. So it’s normal.

Martin:

e Yes. And you have network bandwidth. Maybe the network card can’t process that much
data.

e These are all 30-user tests. Do you have the view of the 20 users test? We need to
compare the 20-user test vs. the 30-user test. Or, add the users incrementally to see the
changes in the modules.

Sha Jiang: Will do.

To do: Shang Jiang will do another test as Martin suggested and share a new report. The
discussions will continue on Slack. Another meeting will be scheduled if needed.

2.If we need to keep the indexes that we added on our own, how can we reduce the response
time? (Sha Jiang)

Martin: If index is really the problem, maybe redesign?

Vince: The first thing is to decide if the indexes are problematic or not. Remove the index to see
if it’s getting better. If yes, you may need to look at solutions. There are ways to optimize
indexes. Sometimes you make a composite index. Sometimes you need to break it into multiple
indexes.

Martin: Another way to troubleshoot the problem. In KR I/O or in JMeter, you will get a list of
the API calls in the workflow. You can sort them by response time. As you run tests between 20
users and 30 users, you can also narrow down which API is becoming much slower. That’s
another way to troubleshoot.

